

SmartBoard

TEAM MEMBER:

YANJUN DUAN, MOHAMMAD AHMAD, WENKUN XIAO

Professor: DR.Carlo R daCunha

TA: Jordan Beverly

Table of Contents

Introduction

Problem Statement

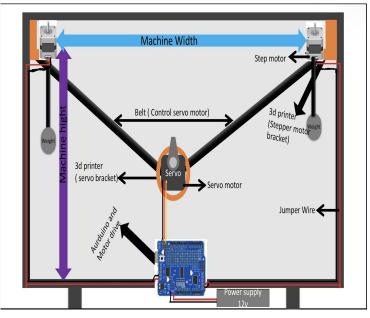
Solution Statement

- Requirements
- Architecture
- Prototype

Update on Challenges

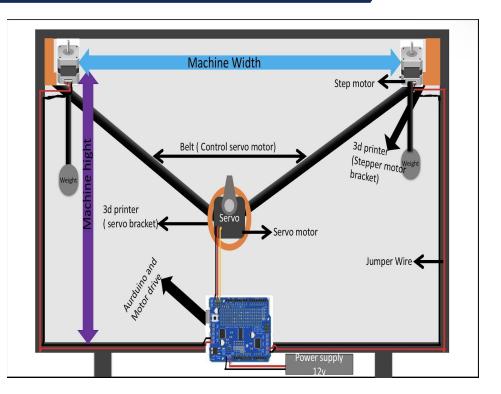
• Testing Plan Update on Schedule

Conclusion

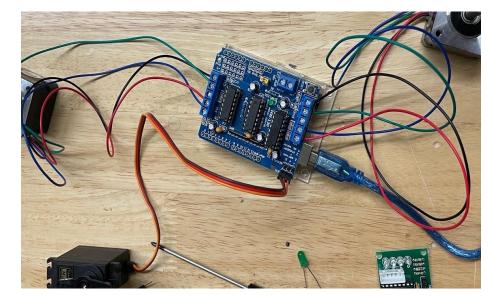


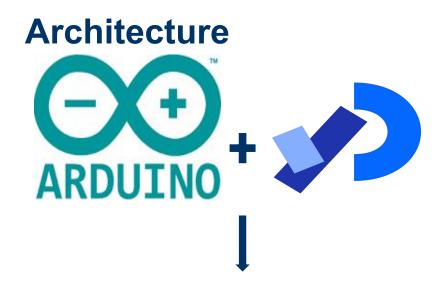
Introduction

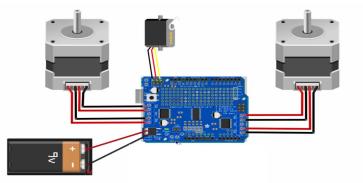
- 1. What is the smart board?
 - Smart Board is combining of traditional whiteboard with a new type of smart whiteboard.
- 2. How to use it?
 - Controlling the board remotely.
- 3.Why we chose this project?
 - Smart whiteboard that pushes the physical boundaries of a traditional whiteboard.

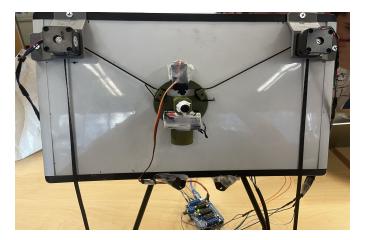

Problem Statement

- Many professors prefer to use whiteboards in their offices.
- Smart Board can save the contents.
- For people who prefer to study online.
- Can draw complex things

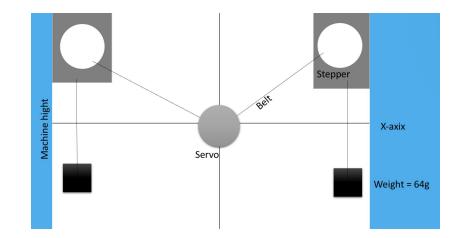

Solution Statement

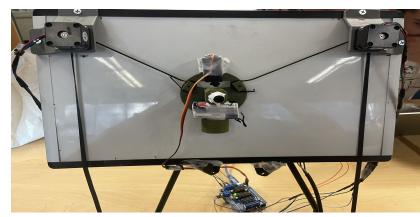

- 1. Requirements of the project.
- 2. Architecture of the project.
- 3. Prototype of the project.




Requirements

- Write new notes and save them.
- Can be controlled remotely.
- Have high accuracy.
- Easy to move.
- Have lower cost.





Prototype

- 1. Stepper motor.
 - Control the Belt
- 2. Servo motor.
 - Left the gondola.
- 3. Arduino uno.
 - Control servo and stepper motor
- 4. Processing software.
 - Download the vector and draw it

Update on Challenges

Counterweight

Gondola

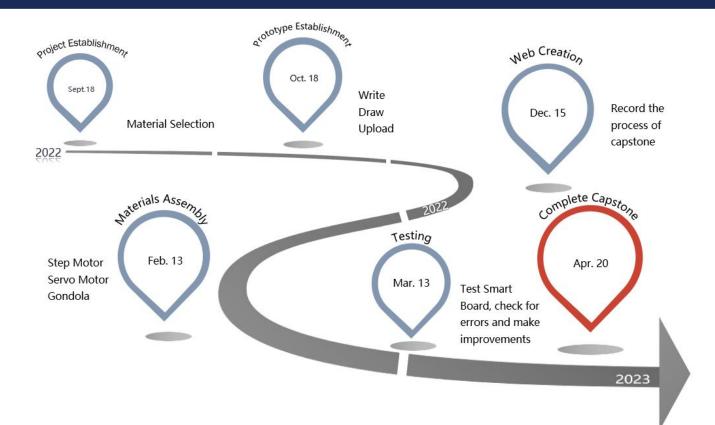
- Change from Raspberry Pi to Arduino
- We use some weight to balance the stepper motor

- Change the Gondola until find the perfect shape
- Use extra power supply

Testing Plan

Testing {	Functional testing		Test case development	
	Usability testing	Testing Approach	Test execution	
	Safety testing		Defect reporting and tracking	

All functional requirements must be met.


Pass/Fail Criteria

Usability testing must receive an average score of 8/10 or higher. Safety testing must identify and address all hazards.

Testing Matrix

Test Case ID	Test Case Description	Test Data	Expected Result	Actual Result	Pass/Fail
TC001	Verify that the robot		Robot moves in	Robot moves in	
	can move in all	User input	the specified	the specified	pass
	directions		direction	direction	
TC002	can detect and avoid	Obstacle placed in front of robot	Robot stops or	Robot stops or	
			changes direction	changes direction	pass
			to avoid the	to avoid the	
			obstacle	obstacle	
TC004	Verify that the robot can draw on the whiteboard	User input	Robot draws the	Robot draws the	pass
			specified shape or	specified shape or	
			text on the	text on the	
			whiteboard	whiteboard	

Update on Schedule

Conclusion

- Smartboard is a machine designed to draw or write on a whiteboard automatically. It can be controlled by a computer program (processing software).
- Such robots have many uses, including in classrooms, meeting rooms, and research facilities, where they can enhance the efficiency and productivity of tasks that require repetitive writing or drawing.
- After conducting research and analysis, it can be concluded that whiteboard robots have several advantages over traditional whiteboard usage, such as:
 - 1. Time-saving: Whiteboard robots can complete tasks in less time than humans, allowing for increased.
 - 2. Remote control: Whiteboard robots can be controlled remotely so it will easy to use.
 - 3. Accessibility: Whiteboard robots can be programmed to write or draw comlex thing.

Reference

- [1] "XY Plotter Drawing Robot using Arduino Polargraph," Instructables, 2021. [Online]. Available: https://www.instructables.com/XY-Plotter-Drawing-Robot- Arduino-Polargraph/. [Accessed: May 10, 2023].
- [2] "Whiteboard Drawing Robot," Thingiverse, 2014. [Online]. Available: https://www.thingiverse.com/thing:575487. [Accessed: May 10, 2023].
- [3]Yao Cai, Qiang Zhan, M. Ceccarelli, G. Carbone, Shuangji Yao and Zhen Lu, "Design and simulation of a DSP controller for a LARM Hand," 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, 2010, pp. 361-364, doi: 10.1109/CAR.2010.5456824.
- [4]MertArduino. "Make Arduino XY Plotter Drawing Robot (Polargraph)." Hackster.io. [Online]. Available: https://www.hackster.io/mertarduino/make- arduino-xy-plotter-drawing-robot-polargraph-b4fe36 [Accessed: May 10, 2023].
- [5]Hackster.io. "A 3D Printed Whiteboard Robot That You Can Build Yourself." [Online]. Available: https://www.hackster.io/news/a-3d-printed-whiteboard-robot- that-you-can-build-yourself-c368a49e037f. [Accessed: May. 10, 2023].

Thank you

